基本信息 姓名:姜荣 职称:教授 办公室:15号楼507室 邮箱:jiangrong@sspu.edu.cn 个人简介: 姜荣,理学博士,教授。现为上海第二工业大学数理与统计学院教师。研究方向为:大数据建模,分位数回归和单指标模型等。在J Bus Econ Stat、J Financ Economet、Neurocomputing、Test和J Multivariate Anal等国际期刊上发表SCI和SSCI论文30余篇。主持国家自然科学基金青年基金、国家自然科学基金天元基金、教育部人文社科基金和上海市扬帆计划。 教育背景: 2009年09月至2014年04月,同济大学数学科学学院,应用数学专业,获博士学位,研究方向:统计学 2005年09月至2009年07月,同济大学数学科学学院,统计学专业,获学士学位 工作经历: 2023年01月至今:上海第二工业大学数理与统计学院,教授 2018年09月至2022年12月:东华大学理学院,副教授 2014年04月至2018年08月:东华大学理学院,讲师 2017年12月至2018年12月:Brunel University London(英国),访问学者 研究方向: 大数据分析,分位数回归和单指标模型 主讲课程: 《高等工程数学》、《应用统计》、《属性数据分析》、《非参数统计》、《概率论与数理统计》 主持项目: 2022年09月—2025年12月:教育部人文社会科学研究青年基金项目“高维流数据下线性分位数回归模型的理论研究及应用”(No.22YJC910005),8万元,在研 2019年01月—2021年12月:国家自然科学基金青年基金项目“大数据下单指标模型的统计推断研究”(No.11801069),20万元,结题 2017年05月—2020年04月:上海市扬帆计划“超高维数据单指标模型的变量选择问题研究”(No.17YF1400800),20万元,结题 2017年01月—2017年12月:国家自然科学基金天元基金项目“单指标模型估计方法的研究”(No.11626057),3万元,结题 学术论文: [1] Jiang R, Yu K. (2023). Rong Jiang and Keming Yu's Discussion of “Estimating means of bounded random variables by betting” by Ian Waudby-Smith and Aaditya Ramdas, Journal of the Royal Statistical Society Series B: Statistical Methodology. qkad119, https://doi.org/10.1093/jrsssb/qkad119(SCI, 一区,顶刊) [2] Jiang R, Yu K. (2023). Unconditional quantile regression for streaming data sets. Journal of Business & Economic Statistics. https://doi.org/10.1080/ 07350015.2003.2293162. (SCI, SSCI二区) [3] Jiang R, Yu K. (2023). No-crossing single-index quantile regression curve estimation. Journal of Business & Economic Statistics. 41: 309-320. (SCI, SSCI二区) [4] Jiang R, Choy S, Yu K. (2023). Non-crossing quantile double-autoregression for the analysis of streaming time series data. Journal of Time Series Analysis. DOI: 10.1111/jtsa.12725. (SCI). [5] Jiang R, Chen S, Wang F. (2023). Quantile regression for massive data set. Communications in Statistics-Simulation and Computation. https://doi.org/ 10.1080/03610918.2023.2202840. (SCI) [6] Jiang R, Peng Y. (2023). A short note on fitting a single-index model with massive data. Statistical Theory and Related Fields. 7: 49-60. (ESCI) [7] Jiang R, Hu X, Yu K. (2022). Single-index expectile models for estimating conditional value at risk and expected shortfall. Journal of Financial Econometrics. 20: 345-366. (SSCI三区) [8] Jiang R, Yu K (2022). Renewable quantile regression for streaming data sets. Neurocomputing. 508: 208-224. (SCI二区Top) [9] Jiang R, Sun M. (2022). Single-index composite quantile regression for ultra-high-dimensional data. Test. 31: 443-460. (SCI二区) [10] Jiang R, Guo M, Liu X. (2022). Composite quasi-likelihood for single-index models with massive datasets. Communications in Statistics-Simulation and Computation. 51: 5024-5040. (SCI) [11] Jiang R, Yu K. (2021). Smoothing quantile regression for a distributed system. Neurocomputing. 466: 311-326. (SCI二区Top) [12] Jiang R, Chen W, Liu X. (2021). Adaptive quantile regressions for massive datasets. Statistical Papers, 62:1981-1995. (SCI, 二区) [13] Jiang R, Peng Y, Deng Y. (2021). Variable selection and debiased estimation for single-index expectile model. Australian & New Zealand Journal of Statistics,63:658-673. (SCI) [14] Jiang R, Yu K. (2020). Single-index composite quantile regression for massive data. Journal of Multivariate Analysis, 180: 104669. (SCI) [15] Jiang R, Hu X, Yu K and Qian W. (2018). Composite quantile regression for massive datasets, Statistics, 52: 980-1004. (SCI) [16] Jiang R, Qian W, and Zhou Z. (2018). Weighted composite quantile regression for partially linear varying coefficient models. Communications in Statistics—Theory and Methods, 47: 3987-4005. (SCI) [17] Jiang R, Qian W, Zhou Z.(2016). Weighted composite quantile regression for single-index models, Journal of Multivariate Analysis, 148: 34-48. (SCI) [18] Jiang R, Qian W, Zhou Z.(2016). Single-index composite quantile regression with heteroscedasticity and general error distributions, Statistical Papers, 57: 185-203. (SCI, 二区) [19] Jiang R, Qian W.(2016). Quantile regression for single-index-coefficient, Statistics and Probability Letters, 110: 305-317. (SCI) [20] Jiang R.(2015). Composite quantile regression for linear errors-in-variables models, Hacettepe Journal of Mathematics and Statistics, 44: 707-713. (SCI) [21] Jiang R, Zhou Z, Qian W.(2015). Generalized Analysis-of-variance-type Test for the Single-index Quantile Model, Communications in Statistics—Theory and Methods, 44: 2842-2861. (SCI) [22] Jiang R, Qian W, Zhou Z.(2014). Test for single-index composite quantile regression,Hacettepe Journal of Mathematics and Statistics, 43: 861-871. (SCI) [23] Jiang R, Qian W, Li J.(2014). Testing in linear composite quantile regression models, Computational Statistics, 29: 1381-1402. (SCI) [24] Jiang R, Zhou Z, Qian W. and Chen Y.(2013). Two step composite quantile regression for single-index models. Computational Statistics & Data Analysis, 64, 180-191. (SCI, 二区) [25] Jiang R, Qian W, Zhou Z.(2012). Variable selection and coefficient estimation via composite quantile regression with randomly censored data, Statistics and Probability Letters, 82: 308-317. (SCI) [26] Jiang R, Zhou Z, Qian W, Shao W.(2012). Single-index composite quantile regression, Journal of the Korean Statistical Society, 41: 323-332. (SCI) [27] Jiang R, Yang X, Qian W.(2012). Random weighting M-estimation for linear errors-in-variables models, Journal of the Korean Statistical Society, 41: 505-514. (SCI)